Siva Nair

The Mahler measure of some polynomial families

Siva Sankar Nair

(including joint work with Matilde Lalín and Subham Roy)

Université de Montréal

CNTA XVI

June 14th, 2024

KORKARA KERKER YOUR

The definition

[Mahler measure of](#page-0-0) some polynomials

Siva Nair

For a non-zero rational function $P \in \mathbb{C}(x_1,\ldots,x_n)^\times$, we define the (logarithmic) Mahler measure of P to be

$$
\mathfrak{m}(P) := \int_{[0,1]^n} \log \left| P(e^{2\pi i \theta_1}, \ldots, e^{2\pi i \theta_n}) \right| d\theta_1 \cdots d\theta_n.
$$

KORKA EX YEAR ON A CHA

 \blacktriangleright Average value of log $|P|$ over the unit *n*-torus.

▶ Introduced as a height function

The one-variable case

If $P(x) = A \prod_{j=1}^{d} (x - \alpha_j)$, then Jensen's formula implies

$$
\mathfrak{m}(P) = \int_0^1 \log |P(e^{2\pi i \theta})| d\theta = \log |A| + \sum_{\substack{j \\ |\alpha_j| > 1}} \log |\alpha_j|.
$$

• Thus, if $P(x) \in \mathbb{Z}[x] \Longrightarrow \mathfrak{m}(P) \geq 0$

[Mahler measure of](#page-0-0) some polynomials

Siva Nair

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Some Properties

▶ Kronecker's Lemma: $P \in \mathbb{Z}[x]$, $P \neq 0$,

$$
\mathfrak{m}(P) = 0 \text{ if and only if } P(x) = x^n \prod_i \Phi_i(x),
$$

where $\Phi_i(x)$ are cyclotomic polynomials.

▶ Lehmer's Question (1933, still open): Does \exists a $\delta > 0$ such that, for any $P \in \mathbb{Z}[x]$, if $m(P) \neq 0$, then $m(P) > \delta$?

$$
\mathfrak{m}(x^{10}+x^9-x^7-x^6-x^5-x^4-x^3+x+1) \approx 0.162357612\dots
$$

Related to heights. For an algebraic integer α with logarithmic Weil height $h(\alpha)$,

$$
\mathfrak{m}(f_{\alpha})=[\mathbb{Q}(\alpha):\mathbb{Q}]h(\alpha).
$$

KORKA EX YEAR ON A CHA

[Mahler measure of](#page-0-0) some polynomials

Siva Nair

Kurt Mahler Johan Jensen Derrick Lehmer

K ロ K イロ K イミ K イミ K ニョー の Q Q

More variables, more problems (more fun?)

Calculating the Mahler measure of multi-variable polynomials is very difficult.

For certain polynomials, the Mahler measure comes up as a value of an L-function!

Smyth, 1981:

▶

▶

$$
\mathfrak{m}(1+x+y)=\frac{3\sqrt{3}}{4\pi}L(\chi_{-3},2)=L'(\chi_{-3},-1)
$$

$$
\mathfrak{m}(1+x+y+z)=\frac{7}{2\pi^2}\zeta(3)=-14\zeta'(-2)
$$

KORKA EX YEAR ON A CHA

[Mahler measure of](#page-0-0) some polynomials

More examples

[Mahler measure of](#page-0-0) some polynomials

Siva Nair

Condon, 2004:

▶

▶

$$
\mathfrak{m}(x+1+(x-1)(y+z))=\frac{28}{5\pi^2}\zeta(3)=-\frac{112}{5}\zeta'(-2)
$$

Lalín, 2006: ▶

$$
\mathfrak{m}\left(1+x+\left(\frac{1-\nu}{1+\nu}\right)\left(\frac{1-w}{1+w}\right)(1+y)z\right)=\frac{93}{\pi^4}\zeta(5)=124\zeta'(-4)
$$

Rogers and Zudilin, 2010:

$$
\mathfrak{m}\left(x+\frac{1}{x}+y+\frac{1}{y}+8\right)=\frac{24}{\pi^2}L(E_{24a3},2)=4L'(E_{24a3},0)
$$

KID KA KE KA TE KA TE KORO

Siva Nair

Matilde Lalín Chris Smyth David Boyd

Coming up with such identities

Siva Nair

- ▶ In general, Mahler measures are arbitrary real values.
- \blacktriangleright Polynomials with a certain structure may give interesting values.
- \triangleright Use the computer to compare with known L-values.

KORKA EX YEAR ON A CHA

 \triangleright Commonly associated to evaluating certain polylogarithms.

An explanation for the appearance of L-values Let $P = A_d y_{n+1}^d + A_{d-1} y_{n+1}^{d-1} + \cdots + A_0 \in \mathbb{C}[y_1, \ldots, y_{n+1}]$ and

$$
D = \{ (y_1, \ldots, y_n, y_{n+1}) : \forall i \leq n, |y_i| = 1, |y_{n+1}| > 1, P(y_1, \ldots, y_{n+1}) = 0 \}
$$

Theorem (Deninger 1997)

If P is irreducible, then

$$
\mathfrak{m}(P) = \mathfrak{m}(A_d) + \frac{(-1)^n}{(2\pi i)^n} \int_{\overline{D}} \eta(y_1,\ldots,y_{n+1}).
$$

Here $\eta(y_1,\ldots,y_{n+1})$ is a closed differential form that satisfies

$$
\eta(y_1,\ldots,y_{n+1})|_D=(-1)^n\log|y_{n+1}|\frac{\mathrm{d}y_1}{y_1}\wedge\cdots\wedge\frac{\mathrm{d}y_n}{y_n}.
$$

Can be related to a Beilinson regulator. \longrightarrow Beilinson conjectures**KORKA SERKER DE VOOR** [Mahler measure of](#page-0-0) some polynomials

Calculations by Brunault and Zudilin

Numerical calculations by Brunault and Zudilin:

$$
\begin{array}{l} \mathfrak{m}(x^2 + x + 1 + (x^2 - 1)(y + z)) \\ \mathfrak{m}(x^3 - x^2 + x - 1 + (x^3 + 1)(y + z)) \\ \mathfrak{m}(x^4 - x^3 + x - 1 + (x^4 - x^2 + 1)(y + z)) \\ \mathfrak{m}(x^4 - x^3 + x - 1 + (x^4 - x^3 + x^2 - x + 1)(y + z)) \\ \mathfrak{m}(x^4 - x^3 + x^2 - x + 1 + (x^4 - 1)(y + z)) \\ \mathfrak{m}(x^4 - x^3 + x - 1 + (x^4 + 1)(y + z)) \\ \mathfrak{m}(x^5 - x^4 + x - 1 + (x^5 + 1)(y + z)) \end{array} \qquad \qquad \geq \frac{28}{5\pi^2}\zeta(3).
$$

Condon showed

$$
\mathfrak{m}(x+1+(x-1)(y+z))=\frac{28}{5\pi^2}\zeta(3).
$$

[Mahler measure of](#page-0-0) some polynomials

Siva Nair

Francois Brunault Wadim Zudilin

K ロ K (- K 프 K X E X H E X O Q O

Is there some connection?

Siva Nair

An invariant property

Theorem (Lalín $&$ N., 2023)

Let $P(x, y_1, \ldots, y_n)$ be a polynomial over $\mathbb C$ in the variables x, y_1, \ldots, y_n . Let $g(x) \in \mathbb{C}[x]$ be such that all the roots have absolute value greater than or equal to one, let k be an integer such that $k > \deg(g)$ and let $f(x) = \lambda x^k \overline{g}(x^{-1})$, where λ is a complex number with absolute value one. We denote by P the rational function obtained by replacing x by $f(x)/g(x)$ in P. Then

$$
\mathfrak{m}(P)=\mathfrak{m}(\widetilde{P}).
$$

KORKA EX YEAR ON A CHA

Families of polynomials with arbitrarily many variables

Let

$$
P_k = y + \left(\frac{1-x_1}{1+x_1}\right)\cdots \left(\frac{1-x_k}{1+x_k}\right).
$$

Theorem (Lalín, 2006)

$$
\mathfrak{m}(P_{2n}) = \sum_{h=1}^{n} \frac{a_{n,h}}{\pi^{2h}} \zeta(2h+1),
$$

and

$$
\mathfrak{m}(P_{2n+1})=\sum_{h=0}^n\frac{b_{n,h}}{\pi^{2h+1}}L(\chi_{-4},2h+2).
$$

 $a_{i,k}, b_{i,k} \in \mathbb{Q}$ related to coefficients of elementary symmetric polynomials.

[Mahler measure of](#page-0-0) some polynomials

Siva Nair

KORKARA KERKER YOUR

Proof

[Mahler measure of](#page-0-0) some polynomials

Siva Nair

$$
P_k = y + \left(\frac{1-x_1}{1+x_1}\right) \cdots \left(\frac{1-x_k}{1+x_k}\right).
$$

\n
$$
\begin{array}{c}\n\downarrow \\
\downarrow \\
\downarrow \\
Q_\gamma(y) = y + \gamma\n\end{array}
$$

$$
\mathfrak{m}(P_k) = \frac{1}{(2\pi)^k} \int_{-\pi}^{\pi} \cdots \int_{-\pi}^{\pi} \mathfrak{m}\left(Q_{\left(\frac{1-e^{i\theta_1}}{1+e^{i\theta_1}}\right)\cdots\left(\frac{1-e^{i\theta_k}}{1+e^{i\theta_k}}\right)}(y)\right) d\theta_1 \ldots d\theta_k
$$
\n
$$
\begin{array}{c}\n\vdots \\
\downarrow\n\end{array}
$$
\n
$$
= \frac{2^k}{\pi^k} \int_{0}^{\infty} \cdots \int_{0}^{\infty} \mathfrak{m}(Q_{y_k}) \frac{y_1 dy_1}{(y_1^2+1)} \cdot \frac{y_2 dy_2}{(y_2^2+y_1^2)} \cdots \frac{dy_k}{(y_k^2+y_{k-1}^2)}.
$$

K ロ K + @ K K 할 K K 할 K (할 W) 9 Q Q ·

We have structure that the structure of the single structure of the Siva Nair

$$
\int_0^\infty \,\cdots \int_0^\infty \, \mathfrak{m}(Q_{y_k}) \frac{y_1 \mathrm{d} y_1}{(y_1^2+1)} \cdot \frac{y_2 \mathrm{d} y_2}{(y_2^2+y_1^2)} \cdots \frac{\mathrm{d} y_k}{(y_k^2+y_{k-1}^2)}
$$

which can be written as a linear combination of integrals of the form

$$
\int_0^\infty \mathfrak{m}(Q_t) \log^j t \frac{\mathrm{d}t}{t^2 \pm 1},
$$

and using

$$
\int_0^1 \log^k t \frac{1}{t-a} dt = (-1)^{k+1}(k!) \operatorname{Li}_{k+1}(1/a),
$$

 \rightarrow gives zeta values and *L*-values

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Extending these results

Lalín also looked at

$$
S_{n,r} = (1+x)z + \left[\left(\frac{1-x_1}{1+x_1} \right) \cdots \left(\frac{1-x_n}{1+x_n} \right) \right]^r (1+y).
$$

\n
$$
\begin{array}{c} \leftarrow \\ \text{Compare with} \\ Q_{\gamma}(x,y,z) = (1+x)z + \gamma(1+y) \end{array}
$$

Theorem (Lalín, N., Roy, $2024+$) For $n \geq 1$, ′

$$
\mathfrak{m}(S_{2n,r})=\sum_{h=1}^n \frac{a'_{n,h}}{\pi^{2h}} C_r(h),
$$

and for $n > 0$,

$$
\mathfrak{m}(S_{2n+1,r})=\sum_{h=0}^n\frac{b'_{n,h}}{\pi^{2h+1}}\,\mathcal{D}_r(h)
$$

[Mahler measure of](#page-0-0) some polynomials

Siva Nair

KORKARA KERKER YOUR

Siva Nair

$$
C_r(h) := r(2h)! \left(1 - \frac{1}{2^{2h+1}}\right) \zeta(2h+1) + \frac{r^2(2h-1)!}{\pi^2} \times \left\{ \frac{(-1)^{h+1}7B_{2h}\pi^{2h}}{2r^2(2h)!} \zeta(3) \left(2^{2h-1} + (-1)^r 2^{2h-1} + (-1)^{r+1} \right) \right. + (2h+2)(2h+1) \frac{1-2^{-2h-3}}{r^{2h+2}} (1 - (-1)^r) \zeta(2h+3) - \sum_{\ell=0}^{2r-1} (-1)^{\ell} \left[\sum_{t=2}^{2h+2} \left(\frac{(t-1)(t-2)}{2} (-1)^t \left(\text{Li}_t(\xi_{2r}^{\ell}) - \text{Li}_t(-\xi_{2r}^{\ell}) \right) \right. - \left(\frac{t-1}{2h-1} \right) (2 - 2^{1-t}) \zeta(t) \right) \times \frac{(2\pi i)^{2h+3-t}}{(2h+3-t)!} B_{2h+3-t} \left(\frac{\ell}{2r} \right) \bigg] \bigg\}.
$$

K ロ K + @ K K 할 K K 할 K (할 W) 9 Q Q ·

Examples

[Mahler measure of](#page-0-0) some polynomials

Siva Nair

$$
\mathfrak{m}\left(1+x+\left[\left(\frac{1-x_1}{1+x_1}\right)\right]^2(1+y)z\right)=\frac{21}{2\pi^2}\zeta(3)
$$
\n
$$
\mathfrak{m}\left(1+x+\left[\left(\frac{1-x_1}{1+x_1}\right)\left(\frac{1-x_2}{1+x_2}\right)\right]^2(1+y)z\right)=\frac{96}{\pi^3}L(\chi_{-4},4)-\frac{21}{2\pi^2}\zeta(3)
$$
\n
$$
\mathfrak{m}\left(1+x+\left[\left(\frac{1-x_1}{1+x_1}\right)\dots\left(\frac{1-x_3}{1+x_3}\right)\right]^2(1+y)z\right)=\frac{31}{2\pi^4}\zeta(5)-\frac{96}{\pi^3}L(\chi_{-4},4)+\frac{21}{2\pi^2}\zeta(3)
$$

$$
m\left(1+x+\left(\frac{1-x_1}{1+x_1}\right)(1+y)z\right) = \frac{24}{\pi^3}L(\chi_{-4}, 4)
$$

$$
m\left(1+x+\left(\frac{1-x_1}{1+x_1}\right)^2(1+y)z\right) = \frac{21}{2\pi^2}\zeta(3)
$$

$$
m\left(1+x+\left(\frac{1-x_1}{1+x_1}\right)^3(1+y)z\right) = -\frac{8}{\pi^3}L(\chi_{-4}, 4) + \frac{12\sqrt{3}}{\pi^2}L(\chi_{12}(11, \cdot), 3)
$$

$$
m\left(1+x+\left(\frac{1-x_1}{1+x_1}\right)^4(1+y)z\right) = -\frac{105}{2\pi^2}\zeta(3) + \frac{64\sqrt{2}}{\pi^2}L(\chi_8(5, \cdot), 3)
$$

K ロ K + @ K K 할 K K 할 K (할 W) 9 Q Q ·

Siva Nair

Matilde Lalín Subham Roy N.

K ロ K イロ K イミ K イミ K ニョー の Q Q

c C

Making some clever transformations!

[Mahler measure of](#page-0-0) some polynomials

Siva Nair

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Why does this work – Möbius transformations?

The transformation

$$
\phi(z) = \frac{1-z}{1+z}
$$

sends the unit circle to the imaginary axis. For $z=e^{i\theta}$,

$$
\frac{1-z}{1+z} = -2i \tan\left(\frac{\theta}{2}\right).
$$

Some natural questions:

- ▶ Transformations that send unit circle to other lines?
- \blacktriangleright Those that preserve the unit circle?

▶ These are

$$
\phi(z)=e^{i\alpha}\frac{z-a}{1-\overline{a}z},
$$

where $a \in \Delta$.

[Mahler measure of](#page-0-0) some polynomials

Siva Nair

KORKARA KERKER YOUR

We've already seen this

Theorem (Lalín $&$ N., 2023)

Let $P(x, y_1, \ldots, y_n) \in \mathbb{C}[x, y_1, \ldots, y_n], g(x) \in \mathbb{C}[x]$ without any root inside the unit circle, k be such that $k > \deg(g)$ and $f(x) = \lambda x^{k} \overline{g}(x^{-1})$, where $|\lambda| = 1$. We denote by P the rational function obtained by replacing x by $f(x)/g(x)$ in P. Then

$$
\mathfrak{m}(P)=\mathfrak{m}(\widetilde{P}).
$$

 $f(X)/g(X)$ has the form:

$$
X^{k-\deg(g)}\lambda \prod_{\ell=1}^d \left(\frac{1-X\overline{\gamma_j}}{X-\gamma_\ell}\right).
$$

[Mahler measure of](#page-0-0) some polynomials

Siva Nair

KEL KALA KELKEL KAR

Other results

Let

$$
Q_k(z_1,\ldots,z_k,y)=y+\left(\frac{z_1+\alpha}{z_1+1}\right)\cdots\left(\frac{z_k+\alpha}{z_k+1}\right),
$$

where
$$
\alpha = e^{2\pi i/3} = \frac{-1 + \sqrt{-3}}{2}
$$
.

Theorem (N., 2023+)

$$
\mathfrak{m}(Q_{2n})=\sum_{h=1}^n\frac{a_{n,h}}{\pi^{2h}}\zeta(2h+1)+\sum_{h=0}^{n-1}\frac{b_{n,h}}{\pi^{2h+1}}\ L(\chi_{-3},2h+2),
$$

and

$$
\mathfrak{m}(Q_{2n+1})=\sum_{h=1}^n\frac{c_{n,h}}{\pi^{2h}}\,\zeta(2h+1)+\sum_{h=0}^n\frac{d_{n,h}}{\pi^{2h+1}}\;L(\chi_{-3},2h+2),
$$

where $a_{l,k}, b_{l,k}, c_{l,k}, d_{l,k} \in \mathbb{R}$ are de[fin](#page-23-0)[ed](#page-25-0) [r](#page-23-0)[ec](#page-24-0)[u](#page-25-0)[rsi](#page-0-0)[ve](#page-27-0)[ly.](#page-0-0)

[Mahler measure of](#page-0-0) some polynomials

Examples

We have the first few examples in this family:

$$
m(P_1) = \frac{5\sqrt{3}}{4\pi} L(\chi_{-3}, 2)
$$

\n
$$
m(P_2) = \frac{91}{18\pi^2} \zeta(3) + \frac{5}{4\sqrt{3}\pi} L(\chi_{-3}, 2)
$$

\n
$$
m(P_3) = \frac{91}{36\pi^2} \zeta(3) + \frac{5}{4\sqrt{3}\pi} L(\chi_{-3}, 2) + \frac{153\sqrt{3}}{16\pi^3} L(\chi_{-3}, 4)
$$

\n
$$
m(P_4) = \frac{91}{36\pi^2} \zeta(3) + \frac{3751}{108\pi^4} \zeta(5) + \frac{35}{36\sqrt{3}\pi} L(\chi_{-3}, 2) + \frac{51\sqrt{3}}{8\pi^3} L(\chi_{-3}, 4)
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

[Mahler measure of](#page-0-0) some polynomials

Siva Nair

Further questions

- ▶ Can we do this for other roots of unity? A general method?
- ▶ Do the coefficients have an elegant closed formula?
- \triangleright Simplifying the polylog expressions
- \triangleright Can we relate the complex polynomials to integer polynomials?
- \triangleright Other transformations that can make this method work?

Siva Nair

THANK YOU!

K ロ ▶ K 御 ▶ K 聖 ▶ K 聖 ▶ │ 聖 │ めぬひ