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The definition

For a non-zero rational function P ∈ C(x1, . . . , xn)×, we
define the (logarithmic) Mahler measure of P to be

m(P) : =

∫
[0,1]n

log
∣∣∣P(e2πiθ1 , . . . , e2πiθn)∣∣∣ dθ1 · · · dθn.

▶ Average value of log |P| over the unit n-torus.

▶ Introduced as a height function
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The one-variable case

If P(x) = A
∏d

j=1(x − αj), then Jensen’s formula implies

m(P) =

∫ 1

0
log |P(e2πiθ)|dθ = log |A|+

∑
j

|αj |>1

log |αj |.

(1, 0)

• Thus, if P(x) ∈ Z[x ] =⇒ m(P) ≥ 0
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Some Properties
▶ Kronecker’s Lemma: P ∈ Z[x ], P ̸= 0,

m(P) = 0 if and only if P(x) = xn
∏
i

Φi (x),

where Φi (x) are cyclotomic polynomials.

▶ Lehmer’s Question (1933, still open):
Does ∃ a δ > 0 such that, for any P ∈ Z[x ],
if m(P) ̸= 0, then m(P) > δ?

m(x10+x9−x7−x6−x5−x4−x3+x+1) ≈ 0.162357612 . . .

▶ Related to heights. For an algebraic integer α with
logarithmic Weil height h(α),

m(fα) = [Q(α) : Q]h(α).
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More variables, more problems (more fun?)

Calculating the Mahler measure of multi-variable
polynomials is very difficult.
For certain polynomials, the Mahler measure comes up as a
value of an L-function!
Smyth, 1981:

▶

m(1 + x + y) =
3
√
3

4π
L(χ−3, 2) = L′(χ−3,−1)

▶

m(1 + x + y + z) =
7

2π2
ζ(3) = −14ζ ′(−2)
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More examples

Condon, 2004:
▶

m(x + 1 + (x − 1)(y + z)) =
28

5π2
ζ(3) = −112

5
ζ′(−2)

Laĺın, 2006:
▶

m

(
1 + x +

(
1− v

1 + v

)(
1− w

1 + w

)
(1 + y)z

)
=

93

π4
ζ(5) = 124ζ′(−4)

Rogers and Zudilin, 2010:
▶

m

(
x +

1

x
+ y +

1

y
+ 8

)
=

24

π2
L(E24a3, 2) = 4L′(E24a3, 0)
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Matilde Laĺın Chris Smyth David Boyd
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Coming up with such identities

▶ In general, Mahler measures are arbitrary real values.

▶ Polynomials with a certain structure may give
interesting values.

▶ Use the computer to compare with known L-values.

▶ Commonly associated to evaluating certain
polylogarithms.
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An explanation for the appearance of L-values
Let P = Ady

d
n+1 + Ad−1y

d−1
n+1 + · · ·+ A0 ∈ C[y1, . . . , yn+1]

and

D = {(y1, . . . , yn, yn+1) : ∀i ≤ n, |yi | = 1, |yn+1| > 1,P(y1, . . . , yn+1) = 0}

Theorem (Deninger 1997)

If P is irreducible, then

m(P) = m(Ad) +
(−1)n

(2πi)n

∫
D
η(y1, . . . , yn+1).

Here η(y1, . . . , yn+1) is a closed differential form that
satisfies

η(y1, . . . , yn+1)|D = (−1)n log |yn+1|
dy1
y1

∧ · · · ∧ dyn
yn

.

Can be related to a Beilinson regulator. −→ Beilinson
conjectures
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Calculations by Brunault and Zudilin

Numerical calculations by Brunault and Zudilin:

m(x2 + x + 1 + (x2 − 1)(y + z))
m(x3 − x2 + x − 1 + (x3 + 1)(y + z))
m(x4 − x3 + x − 1 + (x4 − x2 + 1)(y + z))
m(x4 − x3 + x − 1 + (x4 − x3 + x2 − x + 1)(y + z))
m(x4 − x3 + x2 − x + 1 + (x4 − 1)(y + z))
m(x4 − x3 + x − 1 + (x4 + 1)(y + z))
m(x5 − x4 + x − 1 + (x5 + 1)(y + z))


?
=

28

5π2
ζ(3).

Condon showed

m(x + 1 + (x − 1)(y + z)) =
28

5π2
ζ(3).
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Is there some connection?

2X 2+X+1+(X 2−1)(y+z)
X+2

x + 1 + (x − 1)(y + z) 2X 3−X 2+X−1+(X 3+1)(y+z)

−(X 2−X+2)

2X 4−X 3+X−1+(X 4−X 2+1)(y+z)

−(X 3−X 2−X+2)

x=
X (2X+1)

X+2

x= X (2X 3−X 2−X+1)
−(X 3−X 2−X+2)

x=
X (2X2−X+1)

−(X2−X+2)

reverse the coefficients of g and multiply by a
power of X

x = f (X )
g(X )

has all roots outside the unit disc



Mahler measure of
some polynomials

Siva Nair

An invariant property

Theorem (Laĺın & N., 2023)

Let P(x , y1, . . . , yn) be a polynomial over C in the variables
x , y1, . . . , yn. Let g(x) ∈ C[x ] be such that all the roots
have absolute value greater than or equal to one, let k be an
integer such that k > deg (g) and let f (x) = λxkg(x−1),
where λ is a complex number with absolute value one. We
denote by P̃ the rational function obtained by replacing x by
f (x)/g(x) in P. Then

m(P) = m(P̃).
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Families of polynomials with arbitrarily many
variables

Let

Pk = y +

(
1− x1
1 + x1

)
· · ·
(
1− xk
1 + xk

)
.

Theorem (Laĺın, 2006)

m(P2n) =
n∑

h=1

an,h
π2h

ζ(2h + 1),

and

m(P2n+1) =
n∑

h=0

bn,h
π2h+1

L(χ−4, 2h + 2).

aj ,k , bj ,k ∈ Q related to coefficients of elementary symmetric
polynomials.
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Proof

Pk = y +
(
1−x1
1+x1

)
· · ·
(
1−xk
1+xk

)
.

Qγ(y) = y + γ

compare with

m(Pk) =
1

(2π)k

∫ π
−π · · ·

∫ π
−π m

(
Q(

1−eiθ1

1+eiθ1

)
···
(

1−eiθk

1+eiθk

)(y)
)
dθ1...dθk

= 2k

πk

∫∞
0 · · ·

∫∞
0 m(Qyk )

y1dy1
(y2

1+1)
· y2dy2
(y2

2+y2
1 )
· · · dyk

(y2
k+y2

k−1)
.

“clever” transformations
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0
· · ·
∫ ∞

0
m(Qyk )

y1dy1
(y21 + 1)

· y2dy2
(y22 + y21 )

· · · dyk
(y2k + y2k−1)

which can be written as a linear combination of integrals of
the form ∫ ∞

0
m(Qt) log

j t
dt

t2 ± 1
,

and using∫ 1

0
logk t

1

t − a
dt = (−1)k+1(k!)Lik+1(1/a),

→ gives zeta values and L-values
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Extending these results
Laĺın also looked at

Sn,r = (1 + x)z +

[(
1−x1
1+x1

)
· · ·
(
1−xn
1+xn

)]r
(1 + y).

Qγ(x , y , z) = (1 + x)z + γ(1 + y)

compare with

Theorem (Laĺın, N., Roy, 2024+)

For n ≥ 1,

m(S2n,r ) =
n∑

h=1

a′n,h
π2h

Cr (h),

and for n ≥ 0,

m(S2n+1,r ) =
n∑

h=0

b′n,h
π2h+1

Dr (h)
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Cr (h) :=r(2h)!

(
1− 1

22h+1

)
ζ(2h + 1)

+
r 2(2h − 1)!

π2
×{

(−1)h+17B2hπ
2h

2r 2(2h)!
ζ(3)

(
22h−1 + (−1)r22h−1 + (−1)r+1

)
+ (2h + 2)(2h + 1)

1− 2−2h−3

r 2h+2
(1− (−1)r )ζ(2h + 3)

−
2r−1∑
ℓ=0

(−1)ℓ
[

2h+2∑
t=2

(
(t − 1)(t − 2)

2
(−1)t

(
Lit(ξ

ℓ
2r )− Lit(−ξℓ2r )

)
−

(
t − 1

2h − 1

)
(2− 21−t)ζ(t)

)
× (2πi)2h+3−t

(2h + 3− t)!
B2h+3−t

(
ℓ

2r

)]}
.
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Examples

m

(
1 + x +

[(
1− x1

1 + x1

)]2
(1 + y)z

)
=

21

2π2
ζ(3)

m

(
1 + x +

[(
1− x1

1 + x1

)(
1− x2

1 + x2

)]2
(1 + y)z

)
=

96

π3
L(χ−4, 4)−

21

2π2
ζ(3)

m

(
1 + x +

[(
1− x1

1 + x1

)
. . .

(
1− x3

1 + x3

)]2
(1 + y)z

)
=

31

2π4
ζ(5)−

96

π3
L(χ−4, 4) +

21

2π2
ζ(3)

m

(
1 + x +

(
1− x1

1 + x1

)
(1 + y)z

)
=

24

π3
L(χ−4, 4)

m

(
1 + x +

(
1− x1

1 + x1

)2

(1 + y)z

)
=

21

2π2
ζ(3)

m

(
1 + x +

(
1− x1

1 + x1

)3

(1 + y)z

)
= −

8

π3
L(χ−4, 4) +

12
√
3

π2
L(χ12(11, ·), 3)

m

(
1 + x +

(
1− x1

1 + x1

)4

(1 + y)z

)
= −

105

2π2
ζ(3) +

64
√
2

π2
L(χ8(5, ·), 3)
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Making some clever transformations!
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Why does this work – Möbius transformations?

The transformation

ϕ(z) =
1− z

1 + z

sends the unit circle to the imaginary axis. For z = e iθ,

1− z

1 + z
= −2i tan

(
θ

2

)
.

Some natural questions:

▶ Transformations that send unit circle to other lines?
▶ Those that preserve the unit circle?

▶ These are

ϕ(z) = e iα
z − a

1− az
,

where a ∈ ∆.
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We’ve already seen this

Theorem (Laĺın & N., 2023)

Let P(x , y1, . . . , yn) ∈ C[x , y1, . . . , yn], g(x) ∈ C[x ] without
any root inside the unit circle, k be such that k > deg (g)
and f (x) = λxkg(x−1), where |λ| = 1. We denote by P̃ the
rational function obtained by replacing x by f (x)/g(x) in P.
Then

m(P) = m(P̃).

f (X )/g(X ) has the form:

X k−deg (g)λ

d∏
ℓ=1

(
1− Xγj
X − γℓ

)
.



Mahler measure of
some polynomials

Siva Nair

Other results
Let

Qk(z1, . . . , zk , y) = y +

(
z1 + α

z1 + 1

)
· · ·
(
zk + α

zk + 1

)
,

where α = e2πi/3 = −1+
√
−3

2 .

Theorem (N., 2023+)

m(Q2n) =
n∑

h=1

an,h
π2h

ζ(2h + 1) +
n−1∑
h=0

bn,h
π2h+1

L(χ−3, 2h + 2),

and

m(Q2n+1) =
n∑

h=1

cn,h
π2h

ζ(2h + 1) +
n∑

h=0

dn,h
π2h+1

L(χ−3, 2h + 2),

where al ,k , bl ,k , cl ,k , dl ,k ∈ R are defined recursively.
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Examples

We have the first few examples in this family:

m(P1) =
5
√
3

4π
L(χ−3, 2)

m(P2) =
91

18π2
ζ(3) +

5

4
√
3π

L(χ−3, 2)

m(P3) =
91

36π2
ζ(3) +

5

4
√
3π

L(χ−3, 2) +
153

√
3

16π3
L(χ−3, 4)

m(P4) =
91

36π2
ζ(3) +

3751

108π4
ζ(5) +

35

36
√
3π

L(χ−3, 2) +
51

√
3

8π3
L(χ−3, 4)
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Further questions

▶ Can we do this for other roots of unity? A general
method?

▶ Do the coefficients have an elegant closed formula?

▶ Simplifying the polylog expressions

▶ Can we relate the complex polynomials to integer
polynomials?

▶ Other transformations that can make this method work?
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THANK YOU!


