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For a non-zero rational function P € C(xg,...,xn)*, we
define the (logarithmic) Mahler measure of P to be

m(P)::/ |og‘P(e27”'91,...,e2”"9n) dby ---db,.
[0,1)"

» Average value of log |P| over the unit n-torus.

» Introduced as a height function
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If P(x) = AHJ‘.j:l(x — @), then Jensen's formula implies

1
m(P) :/0 log | P(e*™%)|df = log | A| + Z log | cvj|.

J
laj|>1

(1,0)
L)

e Thus, if P(x) € Z[x] = m(P) >0
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» Kronecker's Lemma: P € Z[x], P # 0, Siva Nair
m(P) =0 if and only if P(x) = x”H(D,-(x),

where ®;(x) are cyclotomic polynomials.

» Lehmer's Question (1933, still open):
Does 3 a § > 0 such that, for any P € Z[x],
if m(P) # 0, then m(P) > 67

m(x104-x%—x"—x®—x®—x*—x34x+1) ~ 0.162357612.. ..
> Related to heights. For an algebraic integer a with

logarithmic Weil height h(«),

m(fa) = [Q(c) : QJh(a).
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Calculating the Mahler measure of multi-variable
polynomials is very difficult.

For certain polynomials, the Mahler measure comes up as a
value of an L-function!

Smyth, 1081:
> s
3V3
m(l+x+y)=-—L(x-s3,2) = L'(x-3,-1)
>

W14 xFy +2) = 55((3) = ~14(-2)
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Condon, 2004:

>
mx+1+(x—-1)(y+2)= %CG) = —%C,(—z)
Lalin, 2006:
>
m <1 +x+ (1 _T_ Z) (%) (1 +y)2) = %C(E’) =124¢'(—4)

Rogers and Zudilin, 2010:
>

1 1 24
m (X t Tyt ) + 8) = PL(E243372) = 4L'(E2a3,0)
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» In general, Mahler measures are arbitrary real values.

» Polynomials with a certain structure may give
interesting values.

» Use the computer to compare with known L-values.

» Commonly associated to evaluating certain
polylogarithms.



An explanation for the appearance of L-values
Let P = Agyd s + Ag1yeid + -+ Ao € Cly, ..., Yopi]

and

D={(, -, Ymynt1) : Vi <nlyil =1, |yn+1| > 1, P(ya, ..., yns1) = 0}

Theorem (Deninger 1997)
If P is irreducible, then

= /
P)=m(A e Vnal)-
m( ) m( d)+ (27_”)” 577()’17 » Y +1)
Here n(y1,...,yn+1) is a closed differential form that
satisfies

dyr
n(yi, .- ¥nt1)|p = (—1)"log |ynt1|— A -+ A
Y1 Yn

Can be related to a Beilinson regulator. — Beilinson
conjectures

dyn
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Numerical calculations by Brunault and Zudilin:

m(C +x+ 1+ (¢~ 1)(y +2))

m(x* = x® +x =14+ (° + 1)(y + 2))

mx* = x4 x -1+ (" —x2+1)(y +2)) . 28
mx* =P+ x -1+ =3+ x> —x+1)(y + 2)) =5 =¢(3).
m(x4—x3+x2—x+1+(x4—1)(y+z)) ™
m(x* = x4+ x -1+ (x* +1)(y + 2))

m(x* = x* +x =14 (C + 1)(y + 2))

Condon showed

mlx+1+ (x— 1)y +2)) = %4(3).
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2X2+X+1+(x2—1)(y+z)
X+2

ox+Y)
s

— X(2Xx2—X+1)
—(X2—X+2) X3 - X2 4 X—1+(X34+1)(y+2)

x+14+(x—=1)(y+2) 2 X x12)

2 X4 = X34 X —14(X = X2+ 1) (y+2)
—(X3=X2=X+2)

reverse the coefficients of g and multiply by a
power of X

b has all roots outside the unit disc



. . Mahler measure of
An Invarlant property some polynomials

Siva Nair

Theorem (Lalin & N., 2023)

Let P(x,y1,...,¥n) be a polynomial over C in the variables
X,¥1,--.,Yn. Let g(x) € C[x] be such that all the roots
have absolute value greater than or equal to one, let k be an
integer such that k > deg (g) and let f(x) = Ax*g(x™1),
where \ is a complex number with absolute value one. We
denote by P the rational function obtained by replacing x by
f(x)/g(x) in P. Then

m(P) = m(P).



Families of polynomials with arbitrarily many

variables
1—x 1— X
P, — )
k y+<1+x1> <1+xk)

Theorem (Lalin, 2006)

Let

n a
m(Py,) = W”z’jg(zh+ 1),

h=1

and
n

bn,h
m(Pany1) =) —ahr1 L(X-4,2h +2).
h=0

aj k, bj k € Q related to coefficients of elementary symmetric

polynomials.
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Po=y+(B2) - (B).

é compare with

Qy)=y+~

m(Py) = ﬁ ffﬁ . ffwm <Q(1—e"91)m(1—ef9k)(y)> dfq...do0

1+ei91 1+ei6k
% “clever” transformations -
_ 2k poo  roo vidyi | _yedye . dy
=l o ™MQIEEY  GE T e



We have

/ / n(Q,) 1dy1 o yedys 0 dyk
Wi D 03+ OE vy

which can be written as a linear combination of integrals of

the form - dt
|

and using

1
1
/ Ingttiadt: (—1)k+1(k!)Lik+1(1/a),
0 _

— gives zeta values and L-values
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1-x1) ... (1=xs
14+x1 14+xn
\% compare with

Qy(x,y,2) =(1+x)z+ (1 +y)

r

5n7r - (1 +X)Z + (1 +y)

Theorem (Lalin, N., Roy, 2024+)
Forn>1,

n /

an
m(San,r) = Z 71_27,/,7 Cr(h),

h=1

and forn > 0,

" 8,
m(S2nt1,r) = Z m D,(h)
h=0
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C,(h) :==r(2h)! <1 _ ﬁ) C(2h+1)
(2h )

)(22h 1 (_1)r22h—1 + (_1)r+1)

+
1)h+17Bzh7r
2r2(2h)!

+

1 _ p—2h-3 ,
(2h+2)(2h +1) 55— (1= (-1))¢(2h +3)

Z (1)’ [Z (“1)2(1“2)(_1)* (Lit(ff,) —~ Lir(—fﬁr))

£=0 t=2

t-1 - (2mi)2+3—t ¢
- 2h—1>(2_2 Mt)) X 2h+3 =gy e t<2r>:|}



Examples

21
0
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(1+y)2>—
_ _ 12

(oo (152 (52)
14+ x1 1+x2/ |
_ _ 72
(oo G22) G52
1+ x1 1+ x3 ]

31 96

1+ y)z

@ +y>z) = B4 - 5¢O)

1-
1+ x

(HH
o (35
o (35
oo (35

2) (4 0z) = il

(1+y)z

105 64\f

1+ x+
14+ x+
14+ x+

1+ y)z

L(xs(5,-),3)

o) wen) = 2
) (1+y)z> Lo + 22 10w(11,,3)
SEREOES

= QC(E’) - EL(X—M“) +
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Making some clever transformations! -



Why does this work — Mobius transformations?

The transformation

_1—2

o) = 1

i0

sends the unit circle to the imaginary axis. For z = e

1-~- oit 0
= —2itan| = | .
142z 2

Some natural questions:

» Transformations that send unit circle to other lines?
» Those that preserve the unit circle?
» These are
- Z— a
z)=¢e ¥ —
oz) =2
where a € A.
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Theorem (Lalin & N., 2023)

Let P(x,y1,...,¥n) € Clx,y1,...,¥n], &(x) € C[x] without
any root inside the unit circle, k be such that k > deg (g)
and f(x) = Ax*g(x~1), where |\| = 1. We denote by P the
rational function obtained by replacing x by f(x)/g(x) in P.
Then

m(P) = m(P).

f(X)/g(X) has the form:

d
3 k—deg (g) )‘H <1 - X%)
=1

X =y
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Qu(zt,.. . zi,y) =y + <21+04>__.(Zk+a),

z1+1 zik+1

where o = e271/3 — _1% V=3

Theorem (N., 2023+)

n

a
m(Qan) =Y 57 ¢(2h+1) +Z 2h+1 (x-3.2h+2),
h=1
and
"¢
h
m(Q2n+1) = f72h C 2h+1 Z 2h+1 X 3a2h+2)7
h=1

where aj i, by k, ¢k, dj k € R are defined recursively.



Examples

We have the first few examples in this family:

m(Py) = 203 L(x_a,z)

m(Ps) = @cm o a2+ )
(P = 30503+ e d(5) + s L-a2) + 2L
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» Can we do this for other roots of unity? A general
method?

» Do the coefficients have an elegant closed formula?

» Simplifying the polylog expressions

» Can we relate the complex polynomials to integer
polynomials?

» Other transformations that can make this method work?
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