THE MAHLER MEASURE OF AN n-VARIABLE FAMILY WITH
NON-LINEAR DEGREE
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ABSTRACT. We investigate the Mahler measure of a particular family of rational functions with
arbitrary number of variables and arbitrary degree in one of the variables, generalizing previous
results for families of arbitrary number of variables but linear dependence in each variable obtained
in [Lal06].

1. INTRODUCTION

The (logarithmic) Mahler measure of a non-zero rational function P € C(z1,...,z,)* is defined

as
dxq dx,

1
m(P) = @i /nlog\P(xl,..,,xn)\ LG

X1 L,

where the integration is taken with respect to the Haar measure on the n-dimensional unit torus
T = {(z1,...,2,) €C" : |z1| =+ = |z,| = 1}

When P is a single variable polynomial, Jensen’s formula implies that m(P) can be expressed in
terms of the roots of P. While in the multivariable case there is no general formula for m(P), various
examples are known where m(P) is related to special values of functions that are arithmetically
significant, such as the Riemann zeta function, L-functions, etc. The first formula of this type was
given by Smyth [Smy81] Boy81]:

3v/3

m(l+z+y) = e L(x_3,2),

where L(x_3,s) is the Dirichlet L-function associated to the primitive character x_s of conductor
3. The appearance of these special values has been explained in terms of evaluations of regulators
and Beilinson’s conjectures by Deninger [Den97], Boyd [Boy98], and Rodriguez-Villegas [RV99] (see
also the book of Brunault and Zudilin [BZ20] for a more detailed exposition).

Very few examples are known with more than three variables. Such examples represent important
evidence towards understanding the relationship between Mahler measure and regulators. In [Lal03,
Lal06] Lalin considered the Mahler measures of the following families of rational functions:

1—.1'1 1_$n
Rn y oy ny = y
() T, 2) =2 + (1+x1) <1+In)

Sp(ay,. . a2, y, 2) =14 2)2 + (1 _”31) (1 _x") (1+y),

1—o 1—=z, 1—x 1—=z,
To(x1, - a,x,y) =1 1— .
(21 Tns 75 Y) +<1+:cl) (1—|—xn)x+( (1+x1) <1+xn>>y
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Notice that multiplication by (1 4+ z1)---(1 + x,) turns the above functions into polynomials,
without changing the Mahler measure. They are written as rational functions for convenience.

For ay,...a, € C, define the symmetric functions as the coefficients of the polynomial (z +
ap) - - (x + a,), namely,

1 if ¢ =0,
(1) sz(al,...,an) = Zi1<~~-<zj Ay« + - A4, if 0 < ES n,
0 ifn </.

We also set s = 1 when n = 0.
Recall that the Bernoulli numbers By, are given by

Let forn > 1,
X—4(k —4
7;15 )’ X-alk) ( k )
k=1

The Mahler measures of the polynomials R,,S,, T, are then given by the following formulas
[Lal06, [LLI6). For k > 1,

R%::§§Skh22£ @k-2f)(g>%fum7

L(X—4,£) =

2k —1)! 7r
where
1
A(h) == (2h)! (1 — 22h+1> C(2h +1).
For k£ > 0,
k 2h+1
12 32,. 2k —1)%) /2
m (Rog11) Z Sk-nl )'( )) <;> B(h),
h=0
where
B(h) := (2h + 1)!L(x_4, 2h + 2).
For k> 1,
k 2h+2
se_n(22,42, ..., 2k —2)?) [ 2
m (Sy) = Z k=h( 2k 1§' )) (;) C(h),
h=1 ’
where
h
2h\ (—1)"¢ B 1
C(h) := Z (%) ( 42 Ba_oym 220 + 2)! (1 — 2%3) C(20+3).
(=1
For k£ > 0,
k 2h+3
s 12 3. 2k—1 2
m (Sop41) = Z k-nl )l( ) (;) D(h),
=0
where

h
— 2h+ 1\ (=) 9h—20 |
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For k > 1,
k 2h
log2 Sk—n( 22 42 o (2k — 2)2) 2
m (T E z
where
h
(2h)! 1 S(h—)— 20\ (1)
h) i =——(1-— C(2h +1) 2 -~
Eh) == 2o D+ ; o) 2n
1
X Bg(h_g)ﬂzh72z(2g)! (1 — 2%_‘_1) C(2£+ 1)
For k > 0,
k 2h+2
log 2 sk-n(2%,42, ..., (2k — 2)?) (2
Tor1) = > - h
m (Top11) 9 +h:1 2k 1 1) - F(h),
where

Finy =20 (1 - #) c2n+3)+ T (2n) (1 - 22i+1> C(2h+ 1)

o1 g (20) (=D !
k(2k + 1 240971 — 1 ———— By 22ton 1 — 20+ 1).
SRy )(5) S B e (1= g ) ek
The above formulas are quite miraculous. Their computations are possible because the Mobius
transformation 1 —. has a particular elegant effect mapping the unit circle to the imaginary axis.
The resulting differential in the change of variables also has very special properties, allowing for
certain recurrences relating the case n + 2 to the case n, which explains why the above formulas
depend on the parity of n.

A similar phenomenon was recently explored by Nair [Nai23] who considered the family

Qn(w Ty, 2) '—z+<w+wxl) <w+wmn>
n 17"'7 mny L - e - b

1+ZE1 1+ZEn

where

—1+\/§z'

2
and proved similar formulas involving linear combinations of values of C 1 and £ Xk -3 k) with certain

rational coefficients.

In [Boy06], Boyd proposed the study of polynomials of the form a(z) + b(x)y + ¢(x)z, where
a(x),b(z), c(x) are products of cyclotomic polynomials. The reason for studying this particular class
of polynomials comes from the Cassaigne-Maillot formula for the Mahler measure of a + by + cz
[Mai00], which has an expression that is particularly convenient for numerical integration. The
investigation of such polynomials led to the discovery of several interesting numerical formulas
involving L-functions of elliptic curves. Recently Brunault further pursued these computations
with higher degree cyclotomic polynomials. This led to the discovery of certain formulas with
arbitrary degree such as

(2) m(l+(@®—z+1y+@+1)z2) = T%L (x-3,2),

where r is an arbitrary positive integer.
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In this work our aim is to combine both ideas. More precisely, we generalize the family S,, to

Spr(@1, o Ty, 2) = (1 +x)z + Kl_ml) <1_x”>]r(1+y>

1+l’1 1+.Tn

and we prove the following result.

Theorem 1. Let r > 1. For k > 1, we have
k

e shen(22,42 (20— 2)%) (2"
m(Szk,r)—hZ; =h =D (;) C.(h),

where

C,(h) :=r(2h)! (1 - 22,;) C(2h + 1)

r2(2h — 1)! | (=1)"17 By, w?h
2 2r2(2h)!

C(S) (22h—1 + (_1>r22h—1 + (_1)7'+1)

—2h—3

(24 2)(2h+ 1) (1~ (~1))C(20 + 3)

_ Z_<_1)e [ Z (W(_Ut (Lit(ggr) — Lit(_ggr» _ <2th—_11> (2 — 21—t)C(t)>

t=2

(27”)2h+3 t ¢
“h+3- t)!BQ””’*t o '

For k > 0, we have

(12, 32 2% — 1)2) /2!
52k+17' Z Sk h ( ) ) (_) DT(h>7

= 28] 4
where
D, (h) :=r(2h + 1)!L(x_4,2h + 2)

: h+1(92h+4 _ 2h+44 _1\h 2h+1
+2@r (2h)! {( 1)h+1(2 1) Bopypar (=1)"Eoyr (Lig((

T 1. r
72 r23(20 + 4)! ~ TR 2n)! )~ gl (=) ))

204 3)2h + D)y (Liansa((-0)) = g Linea(-1)) )

+§<—1>4[%5(W< idig) + (1, i)

t=1

(27.”)2h+4 t /
X ————————Bopig ¢ | — .
(2h +4— )1 2
In the above formulas, &, denotes a primitive 2r-root of unity, Li,(z) denotes the polylogarithm
function (see Definition [5]), and B, (t) denotes de Bernoulli polynomial given by

et 2. Bi(t)z
-1 kz k!
—0
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The importance of Theorem [1] is that it provides formulas for the Mahler measure of a family
with arbitrarily many variables and arbitrarily large degree. In contrast, the previous results
involve the families R,,S, and 7T, that have arbitrarily many variables, but are linear in those
variables. Moreover, the degree r plays a non-crucial role in the Mahler measure of S, ., as varying
r fundamentally changes m(S,,,), as opposed to formula (2)), where r is merely a factor in the final
formula.

We remark that in the case r = 1, Theorem [1| reduces to the cases previously known for 5,
namely,

4 4

The case r = 2 also admits an interesting simplification as follows.

7 a2 (24 1) (3

Ca(h) =(~1)""1

h—¢

S ()

h
2h — 1 1)h7€ s
+2 (26 — 1) 92h—20— 5 Ba(noym®" 7 H20 + 1)L (x 0,20 + 2)
=1

1
(22’1_2Z — 1) Bg(h,g)ﬂ'%_%_Q(Qe +2)! (1 - 22£+3) ¢(2t+3)

and

Dy(h) :<—1>h2§}+2 By 1(3)

2h +1 1)h*€ 2h—20—2 2h—2¢
82 20+ 1 2h 1 Banom (204 3)! (227 — 1) L(x-4,2( + 4)

h h—t
+ Z ( ) 22h)+1 E2(h7£)7r2h—2€—1(2€ + 2)| (22€+3 o 1) C(Qg + 3)’

=1

where the Ej, are the Euler numbers given by

Ek:c
1—|—62“ _Z '

Tables [1| and [2| record the formulas for the Mahler measures of S, ; and S, » respectively for the
first few values of n. We have included the case n = 0, not covered in Theorem [I], for comparison
purposes. We see that, although there is a clear distinction between the cases n even and odd for
m(S,,1) in the sense that the formulas for n even only contain special values of the Riemann zeta
function, and the formulas for n odd only contain special values of the Dirichlet L-function, for
m(S,2) the formulas are mixed.

When r > 2 it is more difficult to evaluate C,(h) and D,(h) in terms of special values of the
Riemann zeta function and Dirichlet L-functions, due to the difficulty relating polylogarithms
evaluated at roots of unity of higher order to special values of L-functions. We illustrate the
formulas for the Mahler measures of S;, for the first few values of r in Table . We remark
the appearance of Dirichlet L-functions in the characters yxio(11,-) = (2) of conductor 12 and

xs(5,) == (§) of conductor 8. This is a key distinction from the previous results for the families
R,,S, and T,,.
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‘m(1+z+(1+y)2)
) (i522) 1+ 0)2)
om (1o (52). . (B2) 0 +p)2)

(1+x+(}+§1) (}gg) 1+y)>

(140 (32

7154¢(9) + 63572¢(7) +

¢(3)
93¢ (5)

BBL(T) + 3172 (5)

24874
15

(5)

< —l—x—ir( ) 1+y) >
<1+x+<}+ﬁ> (Lﬁ) —|—y)z>
(1 + x4+ (Lil) (Lii) —|—y)z>

24L(x-4,4)

320L(x_4,6) + 472L(x_4,4)

2688L (x4, 8)+ 16072 L(x_4, 6)+ 22 L(x 4, 4)

TABLE 1. Mahler measure of 5, for n <6.

‘m(l+az+(1+y)2)

. <1+$+ (12) (;—g)fumz)

5¢(3)

967 L(x—4,4) — 2=((3)

- 12
611y (1 Lo+ (};il) o (i;xji) (1 —+ y)z) 128071’[4()(,4, 6) — 3727T2C(5) +
L 1 T4 ) | 4
1123 L(x—4,4) — 22-((3)
- 12
S (1 G (};_) o (};—6) (1+ y)z) 107527 L (x4, 8) — 381072C(7) +
- - 192073 L(x_4,6) — 49671¢(5) +
5 7ind
PR L(x-1,4) — 25C(3)
1 2 21
<1+x+ [(52)] (1+y)z) 2n e (3)

55C(5) — 96w L(x-4,4) +

1277

24

A1’ (3)

(7) — 12807 L(x—4, 6) + S2°((5) —
11274 L(x 4, 4) + 222¢(3)

TABLE 2. Mahler measure of .S, 5 for n < 6.
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:]w

=
/\/:\/_\

_l’_

&

_l’_

()
G;zl) (1+ y)z) —8L(x-4,4) + 12¢/37L(x12(11, ), 3)
(

};gf (1+ y)z) —1%7¢(3) 4+ 64v2mL(xs(5,), 3)

TABLE 3. Mahler measure of Sy, for r < 4.

The proof of Theorem [1| relies on similar recursive strategies as used in the proofs of the previous
results from [Lal06, Nai23] discussed above. For Theorem || we introduce a clever application of
partial fractions that allows us to write the Mahler measure in terms of hyperlogarithms evaluated
at roots of unity. This new idea allows us to make the important transition from the previous
results at » = 1 to the more general case of arbitrary r. These hyperlogarithms give rise to multiple
polylogarithms that can then be reduced to length-one polylogarithms.

This article is organized as follows. Section [2| presents some preliminary results on evaluating
certain necessary integrals that where proven in previous work ([Lal03, [Lal06, [LL16]). An intro-
duction to the general theory of polylogarithms and hyperlogarithms is given in Section [3 The
proof of Theorem [I] is given in Sections [4 and [f] More precisely, Section [4] describes the iterative
process that leads to the Mahler measure being expressed in terms of integrals that can be related
to hyperlogarithms, while these integrals are evaluated in Section [f] Discussions of the case r = 2
and of the cases n = 1 and r = 3,4 are included in Section [6]
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2. SOME PRELIMINARY RESULTS

The goal of this section is to state some results concerning the evaluation of certain integrals
that were proven in [Lal03] [Lal06, [LL16] and that are necessary for the proof of Theorem .

Let P,(y,w,z) = 1+ y + a(l + w)z. The Mahler measure of this polynomial was initially
computed by Smyth [Boy81) [Smy02]. We state here a version given in [Lal03, Theorem 17].

Theorem 2.
2L;5 (o) for Jo| <1,

mm(l+y+a(l +w)z) =
2 log |a| +2L3 (Ja|™') for |a] > 1,
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where, for > 0,
dt dt 2 dt, dty dts

2 [t
Eg(ﬁ):——/ - 0—0— 1= —= _— =
B Jo t*— % t t B Jo<ti<tr<ts<1 17 — % ta t3

The following proposition allows us to compute an integral that will be key for the iterative
process leading to Theorem [I]

Proposition 3. [Lal06, Proposition 5], [LL16, Proposition 5.5] Let a,b > 0 and k € Z>o. We have

| clogh s _ 1yt A (B2) - ()
o (22+a?)(a?+02)  \2 2 :

where the Ag(x) are polynomials in Q[z] given by

e — 1 T
T;x) = =3 Afw)
R(T; ) sinT — k(@) k!

Remark 4. The polynomials Ay(x) satisfy the following recurrence.

1 S8 (k1
) =+ 20 (T v,

bad
and can be explicitly given by
k
2 kE+1
A - _ B 2h71 . 1 -h _k+1—h
k() —k—l-l% h( b )( )itz ,

where the B,, are the Bernoulli numbers. (See the Appendiz to [Lal06] and |[LL16, Lemma 5.2].)

3. INTEGRALS AND POLYLOGARITHMS

In order to understand how special values of zeta functions and L-series arise in our formulas, we
need the definition of polylogarithms. Here we follow the notation of Goncharov [Gon95, [Gon96].

Definition 5. Multiple polylogarithms are defined as the power series

, afighe gk
Lin, o (T1, o, ) 1= E — = ™

EWkn? o knm?
0<ki<ka<-<kp 1 2 m

which are convergent for |z;| < 1 and |x,,| < 1 if n,, = 1. The length of a polylogarithm function
15 the number m and its weight is the number w =ny + -+ + ny,.

Definition 6. Hyperlogarithms are defined as the iterated integrals

Ly (@1 oty Q1) =
/ amtt dt dt dt dt dt dt dt dt
0O—o0--+0—o0 0—o0:++0—0--:0 0—o0---0—,
o l—a { t—ay t t—a, t
ni n9 Nm

where n; are integers, a; are complex numbers, and

/ka dt dt / dt; dty,
O-++0 — e .
0 t - bl t - bk 0§t1§“'§tk§bk+1 tl - b1 tk - bk
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The value of the integral above only depends on the homotopy class of the path connecting 0
and a1 on C\{ay,...,an}.
It is easy to see (for instance, in [Gon96]) that,

as a a a
In1 ..... nm(al Am am+1) — ( 1)mL1n1 ..... Nm (a_ja a_z a ml ZH_I) )
m— m
Lin, (@1, cvxm) = (=1)"Ly o (21 .xm)_l D xT_nI . 1),

which gives an analytic continuation of multiple polylogarithms.
We remark that we recover the special value of the Riemann zeta function ((n) for n > 2 as

Lin(1) = (), Tin(=1) = (1 - 2,3_1) ().

The evaluations at x = 4 also give the Riemann zeta function as well as a Dirichlet L-function:

Re(Liy (i)) = —2% (1 _ 2n11) (), Tm(Lin(i)) = L(x_s, ).

We also have the following useful identity due to Jonquiere |Jon89]

(2ma)"
n!

Li, (™) + (—1)"Li, (e *™*) = — B (x),

where B, (z) is the Bernoulli polynomial, and 0 < Re(z) < 1 if Im(z) > 0 and 0 < Re(x) < 1 if
Im(z) < 0. Notice that in particular we have for 0 < ¢ < 2r,

Lll(fgr) - Lll (527"6) = Ma

r

where &5, is a primitive 2r-root of the unity.
We recall a technical result that will help us recognize special values of the Riemann zeta function
and Dirichlet L-functions from certain integrals.

Lemma 7. [Lal06, Lemma 9] We have the following length-one identities:

L dx , 1
J _(_ +1 3] . .
/0 log’ 15— = (=1)""J! <1 2j+1) U +1),

/11 ’ ; = (C1JL(x-0,j 1)
O xr . _ .
| log’ JUL(X 4, ]

Some combinations of length 2 polylogarithms can be written in terms of length 1 polylogarithms.
We use some results due to Nakamura [Nak12] and Panzer [Panl7|. Here we state the formulation
of [LL18].

Theorem 8. [LLI8, Theorem 3| Let r, s be positive integers, k = r + s, and let u,v be complex
numbers such that |u| = |v| = 1. In addition, we assume that v # 1 if s = 1. Let

Rey {Re k odd,

iIm  k even.
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Then,

2Rey, (L, s(u, v)) =(—1)*Lig(@0) + (—1)"™Li,.(@)Lis(7) + (—1)"'Li,(7)Lis(v)

—1)! ((f - D Li, () + (i B i) Lik(v))
+Z (2@ (12 o)

% (=) Lig () + (—1)*Lig_o(@0)).

_|_

—~

The following statement is a direct application of the above result.

Corollary 9. Let &, denote a primitive 2r-root of unity. If h is a nonnegative integer, we have

2iIm (Lis on+1 (i€, —i)) =Lisn1a(&5,) — Lis(—i&3,) Liopsr (4) + Lis(—i&5, ) Liops1(—1)
() it + (M it

n Z (5 digg+ (15, ) o)
(3) <_L12h+4—t<€2r ) — (=1)"Lizpya-¢(&5,)).

If h is a positive integer, we have

2 Re(Lizop (65, 1)) = — Lispy3(&5,) + 2Lis(£&5, ) Liay (£1)
2h + 2\ _ . 2h + 2\ . .
+ (( 5 )L12h+3(i§§r) + (2h _ 1) L12h+3(i1))

(1 e - (57 omicen)

(4) (—L12h+3—t(§2r ) + (—1)"Ligni3-4(&5,))-

Lemma 10. We have
2r—1

S Tinleh) = 2 c(h)
=0
) S L) = (-2 2 e,
=0
and
(1) Lin(—igh) = — (Lin((—i)") — 27 Lin((—1)"))
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Proof. Indeed, we have

2r—1 oo 2r—1 (_1)@5571 oo 2r—1 ( ;H—’V‘)f
S (=)L) =3 = >
=0 n=1 (=0 n=1 (=0
> 1 2r 1
=2 — ==
" ; nhr Zo (27 + 1)r
n=rmod 2r =
2(1 — 2_h)
22w
The proof of is similar. We also have
2r—1 oo 2r—1 . o) . 2r—1
. . (_1)£(_Z£€1ﬂ)n (_Z)n n+r
DD Lin(—igg) =D Y e =D e Y ()
=0 n=1 ¢=0 n=1 =0
oo D 9 L (—g) @i
D D= gl
= n = (27 +1)
n=r mod 2r

(L)) — 2 L))

O

We finish this section by recalling some particular formulas for special values of ((s) and L(x_4, 2):

(_ 1)nE2nﬂ.2n+1
22n+2(2n)! ’

(=1)"" Bow (27)™"
2(2n)!

((2n) = and  L(x-4,2n+1) =

where B,, and E, denote the n'* Bernoulli and Euler numbers respectively.

4. GENERAL SET-UP

We start by first describing a general setting that could be applied to various rational functions.
Then we will specialize this setting in the particular polynomial from the statement.
Let P, € C(x) be a non-zero rational function such that its coefficients depend (as rational

T
functions) on a parameter o € C. We replace o by [(Ej&) e (iz:)} and obtain a new rational

function P € C(x,x1,...,2,). By definition of the Mahler measure, one can see that

m(P) = ﬁ / " (P[(ihi)w(zz&)]r) d:c_g? o %'

We first apply a change of variables to polar coordinates, z; = ¢':

= L L ey ) -
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Now let y; = tan (3) We get,

—— [ .. Plingyoogn)r .

Wn/oo /oom<(y1 y"))y%—l—l y%_|_1
2n—1 00 o) dyl dyn
= o / o / m (P(Z'"yl"'yn)’") 201 21

0 0 Y1 + Yn +

gn—1 - poo & dyy dy,,
P iy yr .
+7T"/0 /0 m (Peiny, y”))y%H y2 +1

By making one more change of variables, 1 = y1,...,Zn-1 = Y1 Yn—1,Tn = Y1 - - Yn, we finally
obtain
2” 1 / / ZL‘ldi'l i‘gdfifg :%n—ldi'n—l df%n
Z”xn) 52 ~2 | A2 22 52 22 4 A2
1+ 125+ 27 Tyt T o Ty X
2" ! T1d3Ty TodZo Tp_1dTp_q dz,,
~¥"de) )£2+1£2+£2'” + 32, 32 + 32
1 2 1 -1 n— 2 T n—1

Thus, to obtain our final formula, we need to compute this integral.

By iterating Proposition [3] the above integral can be written as a linear combination, with coef-
ficients that are rational numbers and powers of 7 in such a way that the weights are homogeneous,
of integrals of the form

o . dx o0 . dx
(6) /0 m (P(Z'na;)r) log’ T 11 - /0 m (P(_inx)r) log’ T

One can see that j is even if and only if n is odd and the corresponding sign in that case is “+”.
This leads to the following construction.

Definition 11. [Lal06l Definition15] Let ay ; € Q be defined for k > 1, n =2k andj =0,...,k—1

by
/ / ) T1dxy TodZo Tp1dTp_1 dZ,
:I:z T ~ ~ ~9 X ~ N N
") 224122 +22 22 422,243,

2k—2h B dr
_Zakh 1 ( ) / (P(iinx)r) 10g2h 11’ D) .
0 ¢ —1
Let by, ; € Q be defined for k>0, n=2k+1and j =0,...,k by

/ / ) T1dZTy TodZo Tp-1dTp—1 dz,,
Plaing,)r) =3 52 | 5252 52 52 4 A2
i S5 T SR e R e e ol e

2%k—2h d
—Zbk;h< > /0 m (Pangyr) log™ T3 _T_l

The following result is proven in [Lal06].

Theorem 12. [Lal06, Theorem 17] For k > 1 and h=0,...,k — 1, we have

Skflfh(227 C (2k _ 2>2)
2k — 1)

Q. =
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Fork>0and h=0,...,k, we have

b . Sk—h(lzv“'7(2k_ 1>2)
ok = (2K)! ’

where we recall that the symmetric polynomials are given by .

It remains to evaluate the integrals of the type @

5. INTEGRAL REDUCTION

In this section, we focus on evaluating the integral

> : dx
.= . J —_—
L., -—/O m (Pinz)) log Ty (—1)

for the polynomial P, = 1 + y + a(1 + w)z and we deduce our main result. Notice that in this
case the Mahler measure is independent of the complex argument of «, and it therefore suffices to
evaluate m (P,+). We have the following result.

Proposition 13. Let P, =1+ y+ a(l + w)z. When h > 0 we have

2ir2(2h)! {( )h+1(22h+4 1) Bop 42+ .(_1)hE2h7r2h+l (Lig(( , 1. )

123 (20 + 4)] 202 (2h)]

Lron =—3 —i)") = gLis((=1)")

204 3)2h+ D) (Liansa((-0)) = g Linea(-1)) )

+§(—1>£[§(W< i)+ () Jua)

t=1

(27.”)2!14-4 t g
“ahr a5

} +7r(2h + D) L(x-4,2h + 2).

When h > 1 we have

r2(2h — 1)! { (—1)"+17 By, m2h

7T2 2T2(2h)! C(3) (22h—1 4 (_1)r22h—1 + (_1)r+1)

IT,Zh—l =

_ 5—2h—3
T (= (F1))C@R 4

Yy [ S (2 i) - 1) - (5, )@ 20)
/=0

t=2

(2mi)2+3-t /
“2h+3- t)!B”’*?"t or

+ (2h 4 2)(2h + 1)

} +r(2h)! (1 _ %) C(2h+1).

Proof. We start by splitting the integral according to 0 <z <1 and 1 < .

1 . dr o .
L= Pyr)log? 1———F+—— P)log! 1———-+——.
i [P e+ [ m P e
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By applying Theorem [2 we obtain

! 4 U dt dt log’ zdx
1;= - o T T T sy
’ 0 a2 ) Jo 22—t t a4 (=1)
N /OO log (27 + 4" /1 dt dt dt\ log’ xdx
og (x ——0—0— | ———.
. & w2 ) Jo B—a¥ t  t) a2+ (—1)
Denoting the t-variables by 0 < t; < t5 < t3 < 1, we consider the following changes of variables.
For the first term above, we let

‘s T r

b sy b sh b s4
1 — _1“’ 2 — _7,’ 3 — _T7

T T T

and for the second term we let

; x" ; x" y x"
1=, la=—, 1l3= —.

51 Sa S3

This leads to
I 4 /1 rs"'ds rds rds log’ xdx

== — 0O—0—0 ————
i 72 s —1 s s w24 (—1)

N /°° log/ttade 4 /oo log’ zdx  (—r)ds (—r)ds (—r)s""'ds
r .
1 1

21 (1) 72 ° °

- O
x4 (—1)J s s 1—s?r
In the last two integrals, we reverse s — % and z — % to get

4 /1 rs"~'ds rds rds log’ xdx
T, =—

o ——0O

el sr—1 s s OmQ—I—(—l)j
/ log/t Y ade 4 /1 rs"'ds rds rds log’ xdx
— —_—— — 0 —0—0 —————
0o T2+ (=17 72 sr—1 s s w24 (—1)
82 / rs''ds ds ds  log’ xdx /1 log? ™ zdx
= 0 —0—0————— — —_
o sr—1 s s x4 (—1) o 2+ (1)
4241 (—1) /1 rs"'ds ds ds 1 1 du du
= — ~ o—o—o — — dro—o.--0—
w23+l 2r—1 s s x— Pt g4t U u
—_———
7 times

B / log/ ™! xdx
"o (7

Let &, be a primitive (2r)™ root of unity. We can then write

r—1 r—1
s"—1 :H(s— 2y and s +1 :H(s— 2660,
=0 £=0
By applying logarithmic derivatives above, we get
rg—1 r—1 1 g1 r—1 1
s -1 s—g and sl s gt
This gives
rs™1 rs"1 rs"1 plit (—1)*
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Finally we have

2r251(—1)7 = y 2r2j1(~1) = y
Tj=— 0 2 (D Tsg (& - 1) + === > () L (&5, =1 1)

=0 =0

/ log/ ™! xdx
_p | e T
o ¥?+(=1)
221 = S i Ve~ VDIV O
= — 71-2@74‘1 Z( 1) Ll ]+1(l 5 )+ 7T2ij+1 (—].) L13’j+1<—2 or s 0 )
/=0 =0

log? ™ zdx
(7) —7"/ —_—
0

22 (—1)

By Lemmal 7], we have

. 1 . .
log*! ol r(]—i—l)!(l—ﬁ) C(7+2) jodd,
(8) —r/o log' " wdv _

22+ (—1)7
r(j+ D)IL(x-4,7 +2) J even.
When j = 2h is even, we have that
22j1(—1)1 <= g i . _
e T ;(—1)£ (Lig o (#1165, 07971) = Lig ja (=716, —i797h)
=0
2r2i(—1)"(2h)! <= , , . . L
= S (1) (i (165 #-1)") — Liganen (1) 657, i(-1)")
(=0
2r%i(2h)! = . SR ot
= # (1) (Lisony1 (&5, —i) — Liganta(—i&;,", )
T =0
2r23(20)) T . e . ot
= % Z ((_1)£L13,2h+1(7’527’€7 —i) = (=1)° ZL13,2h+l(_Z€§r g Z))
=0
220 =, . e
9) =- 2 Z(_l) Im (L13,2h+1(252r ) —Z)) .
=0

When j = 2h — 1 is odd, we have that

2r j( 1) = ¢ . Gl e—l —j—1 . il —4 i1
WZ(_D (Lls,jﬂ(lj §or i 7 77) = Lig i (=&, —i ))
=0
2 . h . '27‘—1
= 2L = DS (1) (a1, (1)) = isan (1), ~ (1))
=0

| 2r—1

(10) = 27"2—2 D (=1 (Lisan(&, 1) — Ligan(=65,, —1)) -

=0
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Notice that one can combine

(—1)'Lizon (&,5,1) + (—1)* ‘Lisan (&%, 1) =(=1)"Lizan (&', 1) + (—1)Lizan (&, 1)
=(~1)"2Re(Lison (&, 1))

and similarly with
(=1)Lizon (=&, —1) + (—1)* Ligop (=&, —1) =(=1)2Re(Lizon (=&, —1)).

By combining the above with , we finally have that, when j = 2h — 1 is odd,

2:1(_1\i 2r—1 A | |
- % Z(_l)e (Li3’j+1(i]+1§2_r£7i_]_ ) L13J+1( 2 ﬁ —i_]_l))
¢=0
2 2 2%h — 1)! 2r—1
- = 2R OIS (1) (Re (Lis (6575 1) — Re (Lis, o (~&51, 1))

™
=0

In order to continue the simplification, we apply Corollary @ Equation gives, for j = 2h,

2i Z ) Im (Lis oni1(i&5F, — i)
- Z [L12h+4 &) — Li(—i€5, ) Lion11(4) + Lig(—is, ) Lignya (—i) + (2h2+ 3) Lign4(—i€5,)
e 3 ( )t (15, ) 1) i - <—1>tmzh+4_t<5£r>>] .

We now apply part of Lemma [10] and other identities from Section |3| to see that the above equals

-1 h+1 22h+4 -1 32 47T2h+4 . -1 hEg 71_2h+1 ) o 1 . .
== 52h+3<2h+)4>7+ it r2)22h(;h)! (Ll?’((_z) )~ glis((=1) ))
+ (2h + 3)(2h + 2) zi+3 (Li2h+4((_¢)r) 22i+4L12h+4(( 1)r))

+2T21<—1>frhf(W< ti-igh) + ('3, i) %B(Qﬁ)]

t=1
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Equation gives for j = 2h — 1,

2r—1

2 Z Re L13J+1(€2r€7 1)) — Re (Li37j+1(—§2_7.£, —1)))

2h +2
2

+ th (( ) (Lis(&5,) — Lis(—£5,)) — (;h‘_ll) (—1)! (Lig(1) — Lit(—l)))

X (—Lignis—t(&57) + (—1)tLi2h+3—t(§§7«))] .

—Z lmg @)Luh(l)—2L13<—55T>Li2h<—1>+( )(Ligh+3(€§r)—Liah+3(—§§r))

Again, we apply part of Lemma [10] and other identities from Section [3|to see that the above equals

—(—1)2}:1(25)2!h7r2h<(3) (22h71 + (—=1)r2% ! 4 (—1)r+1) + (2h + 2)(2h + 1)%(1 —(=1)")¢(2h + 3)
2r—1 2h+2 (t—1)(t—2) L ‘ f 1 o
_ ;(_1)5 [ tz; (f(_l) (th(fér) - th(_ggr)> - (2h B 1) (2—-2 )C(t))
(13)

(27’(’@)2h+3 t E
x (2h+3—t)!B2h+3_t o) |

Combining equations and with @, , and in @ concludes the proof of the

statement. [l

Proof of Theorem[1 By Definition [T, we have that

2h
Sri Zakh 1 (—) Ir,2h71

and

2h+1
m(Sok1,) Zbkh() Ton-

The result the follows from Theorem [12]and Proposition[13] by setting C,(h) := Z,.2,—1 and D,.(h)
Ir,2h .

Ol

6. SOME PARTICULAR CASES

In this section we focus on the simplest cases, for low values of r or n.
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For the case r = 1, and j = 2h, we have, from ,

1
> (=1)"Im (Lisoner (i(—1) 7", =)
/=0
2
—(2h +3)(h + 1)L(x—4,2h + 4) + (20 + 1) L(x_4, 20 + 2)%
h+1

+ 2(23 —1)(s — 1)L(x_4, 25)(

h+1— 2h+4—2
—1)+ *Bopta—osT e

(2h +4 — 2s)!

This gives, for r =1,

2 2h 4+ 1\ (=1)"* 2h—21 4
Lion =— ———— By 20 'L(x_4,20 +4) = —=D(h
1,2h 2 ; <2f + 1) o2h + 1 2(h—0)T ( + 3) (X 45 + ) 2 ( )7

where we have set s = ¢ + 2.
For the case r = 1, and j = 2h — 1, we have, from ([13)),

1

D (=1 (Re (Lis i1 (1), 1)) — Re (Liz j41 (—(=1)~, =1)))

=0

=(h+1)(2h +1) (2 - #) C(2h +3) — h (1 - ) C(2h + 1)7?

22h+l
h
1 (_1)h_SB2h+2—2s77'2h+2_25
— 2s —1) |2 — — 2 1 .
;S(S )( 22><($+ S @hr2-29)

This gives, for r =1,

h

1 2h\ (=1)"* B 1 4
Ty oh—1 = E (%) %BQ(}L@W% (204 2)! (1 - W) C(20+3) = W—C(h),
/=1

where we have set s = ¢ + 1.
For the case r = 2 and j = 2h, we have, from ,

3
> (1) Im (Lisopi (87, —i))

=0
(_1>h+1217.‘,2h+1 2
- 22h+6(2p)] EorC(3) + (2h + 1) L(x—4,2h + 2)§

h+1

25 — 1 . ohid o 7T2h+4725
— SL(x_4,25) (2°"T472% — 1) —————— Boj14_as
Z( > DL, 28) )(2h+4—23)! 2hd=2
h+1 2h+3—2s

+Z() 1P (2257 — 1) (25 + 1) =5

22h+4(2h + 2 — 25)! Eanra-ae-
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This gives, for r = 2,

—1)"21
Lo on Z(QQT)HE%W%_ICQ)

+38 Z (2h * 1> —( Dl B2(h—e)7r2h_%_2(2f +3)! (2%_% — 1) L(x-4,20+4)
= 20+1) 2h+1

1)h7€

h
2h\ (— o
+) <2€) WE%_M% 267190 - 2)1 (22743 — 1) ¢(2( + 3)
l

ZDQ(h)l-

For the case r = 2, and j = 2h — 1, we have, from ,

> (=1)" (Re (Lisn(i ™, 1)) = Re (Ligan(—i ™", —1)))
:%3% (2% 1) ¢(3) — h <2 - 2%) cen+ )7

h 2s 1 ohio2 q2h+2-2s
- -1 2— — 2 1) (2 ¢ -1)—————B o
% ()0t (2o 3w ) s 0 ) @b 2z e
h+1 2h+3—2s
2s —1 T
—§ 1) L(y_y,2 FEopo_os.
- < 2 )( )L, 3)22h+2*23(2h+2—23)! 2ht2-2

This gives, for r = 2,

(=117 2h—2 (o2h
Lo on—1 :TBWﬂT (2 - 1) ¢(3)

h—1
2R\ (—
+4 Z <%>
=0
h
2h =1 (_1)h_€ 2h—20—1
* Z (25 _ 1) 92h—20—2 Eah-o)T (20 + 1)!L(x-4,20 + 2)

(=1

=Cy(h).

—¢ - o 1
(22h 2w 1) BQ(h—€)7T2h 2-2(9¢ 4 9)| <1 — W) ¢(20+3)

The evaluation of 7, ; and m(S,,,) for r > 2 quickly becomes computationally involved. We will
focus on the case n = 1. This corresponds to the case & = h = 0 and Z,o. We remark that for
7 =0 we have

Too = Re | S Liy((—4)") — 2Lig((~i)") + 2 30 (~1)'Lis(~ig, )¢
=0
3r? 1_. .
- K@( ) + Eng((_l) )
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and
2r—1
m(Sr) = Re | L)) = () + 3 3 ) T )
3r?

1. ;
= Z5CB) + L)),

We get different cases according to the class of r mod 4.
For r = 2s 4+ 1, we have

24(—1)°
(2s 4+ 1)73

3(2s +1)?
872

m(S1am01) = Licut) - @)+ 2D 5 Re(Lig (el )
=0

For r = 4s, we have

1252 4+ 7 165 %=, ., .
(Si) = = 5 )+ D) Relbi—igh )
For r = 4s + 2, we have
652 + 65 — 2 165 + 8 X L,
m(Shisia) = = 0 TR0 + 10D S (1) Re(Lis itk )
=0

Specializing in r = 1,2 we recover the formulas for the Mahler measures of S;; and S; .. We
now provide additional details for the cases r = 3, 4.
For r = 3, we must find

> (1) Re(Lis(—i&f))l = — Re(Lis(e™¢")) + 2 Re(Lis(e 7)) — 3 Re(Lis(i))

+4an(§%»—5qu45%»
—Re(Liz(e¥)) — Re(Liz(e s )) — 3Re(Lis (1)),

since Li(Z) = Li(z). Now consider
cos AT
Re(Lis(e Z k:3

_\/3111+1+ +11121+1+2+
o2 \13 5B B 11l 2\22 4 ¢ 8 100 12°

This sum is absolutely convergent and we may rearrange the terms as desired. Let y12(11,7n) be the
Dirichlet character of conductor 12 given by ( ) This corresponds to the character x124 according
to Mathematica. Its values are given by

n 1[5 7 [11
xe(ln) [ 1[—1|—1]1

so that
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We can also write

11121+1+2+ 1/1 1+1 1+1 1+
25 43 63 8 100 128 2\ 28 43 6 8 108 123

3/1 1+1+
2\63 128 183

1 3 .
= — (2 ‘ 23 — 5. 63) ng(—l)

_ @)
24
Therefore,
. 3) V3
Re(Lis(e®)) = £+ Y2 13,11,
Similarly, we can show that
., bmi 3 V3
Re(L13(656 ) = % - TL(XH(H’ ),3),
and using that Re(Liz(7)) = —2((3), we obtain

S (1) RelLis (i) = 5¢(3) + V3L(xw(11,),3),

=0
which gives
12\/’ 8
m(Sy3) = 2 L(x12(11,-),3) — ﬁL(X74>4)-
When m = 4, using similar manipulations, we can also show
., mi 3 1
Re(Liz(e1)) = 44§(3) + EL(X8(5 ), 3),
., 3mi 3 1
Re(Lig(e ) = =55¢(3) = 5L0xs(5,).3)

where xs(5,7n) is the Dirichlet character of conductor 8 given by (%) This corresponds to the
character xso according to Mathematica. Its values are given by

n 1131567
xs(b,n) | 1| —=1] =117

Thus,
S (1) Re(Lig(~i))¢ = ~4 Re(Lis(e ™)) — 12 Re(Lig(e*%) — =¢(3)
= —150) + VEL(G(5,),3)
and
(514 = —2¢(3) + L2 (5,0 3)

2m2
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7. CONCLUSION

Our results show that the Mahler measure of the family S, , is even richer and more interesting
than the previously known Mahler measure of S, ;. It is clear from the case n = 1 that we can
not expect a formula of the form . Such formula is certainly true if we consider an analogous
construction for the R, family, namely, if we let

1—1’1 1—1}” "
Rnr yoe ey dng = )
o= o (157 (1552

Then, we trivially have that

(R (21,20, 2)) =Ry (21, 2, =27) = D m ( & (:—w) (11))

=rm(R,1(x1,...,2n, 2)).

Thus, the case of R,,; is trivial. Similar considerations apply to the family @, , given by

Ly [(erEm (et )
Qm(q;l,...,xn,z).—z—i-[(1+x1) (1+xn >] 7

An interesting project would be to consider the construction of this article for the family 7T,,:

1—ax L—z,\| l-m Lo\
an y ey by by =1 1= .
e mani=t | (125) - (25) | o+ (- [(55) - (5] )

As we remarked in the introduction, there is a clear distinction between the cases n even and odd
for m(.S,,), namely, the formulas for n even only contain special values of the Riemann zeta function,
and the formulas for n odd only contain special values of the Dirichlet L-function at y_4. However,
for m(S,,2), the formulas are mixed. The case of m(R,) also shows an alternation of formulas
involving special values of the Riemann zeta function or special values of the Dirichlet L-function,
and by the discussion above, since m(R,, ) = rm(R,,), the same is true for m(R,,,) independently
of r. Finally, all the formulas involving m(7},) are given in terms of log 2 and special values of the
Riemann zeta function. It would be interesting to see how this extends to m(7,, ).
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